skip to main content


Search for: All records

Creators/Authors contains: "Mukherjee, Arunabh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The recently discovered spin-active boron vacancy (V$${}_{{{{{{{{\rm{B}}}}}}}}}^{-}$$B) defect center in hexagonal boron nitride (hBN) has high contrast optically-detected magnetic resonance (ODMR) at room-temperature, with a spin-triplet ground-state that shows promise as a quantum sensor. Here we report temperature-dependent ODMR spectroscopy to probe spin within the orbital excited-state. Our experiments determine the excited-state spin Hamiltonian, including a room-temperature zero-field splitting of 2.1 GHz and a g-factor similar to that of the ground-state. We confirm that the resonance is associated with spin rotation in the excited-state using pulsed ODMR measurements, and we observe Zeeman-mediated level anti-crossings in both the orbital ground- and excited-state. Our observation of a single set of excited-state spin-triplet resonance from 10 to 300 K is suggestive of symmetry-lowering of the defect system fromD3htoC2v. Additionally, the excited-state ODMR has strong temperature dependence of both contrast and transverse anisotropy splitting, enabling promising avenues for quantum sensing.

     
    more » « less
  2. null (Ed.)
    van der Waals ferromagnets have gained significant interest due to their unique ability to provide magnetic response even at the level of a few monolayers. Particularly in combination with 2D semiconductors, such as the transition metal dichalcogenide WSe 2 , one can create heterostructures that feature unique magneto-optical response in the exciton emission through the magnetic proximity effect. Here we use 0D quantum emitters in WSe 2 to probe for the ferromagnetic response in heterostructures with Fe 3 GT and Fe 5 GT ferromagnets through an all-optical read-out technique that does not require electrodes. The spectrally narrow spin-doublet of the WSe 2 quantum emitters allowed to fully resolve the hysteretic magneto-response in the exciton emission, revealing the characteristic signature of both ferro- and antiferromagnetic proximity coupling that originates from the interplay among Fe 3 GT or Fe 5 GT, a thin surface oxide, and the spin doublets of the quantum emitters. Our work highlights the utility of 0D quantum emitters for probing interface magnetic dipoles in vdW heterostructures with high precision. The observed hysteretic magneto response in the exciton emission of quantum emitters adds further new degrees of freedom for spin and g -factor manipulation of quantum states. 
    more » « less
  3. Abstract

    Isolated spins are the focus of intense scientific exploration due to their potential role as qubits for quantum information science. Optical access to single spins, demonstrated in III-V semiconducting quantum dots, has fueled research aimed at realizing quantum networks. More recently, quantum emitters in atomically thin materials such as tungsten diselenide have been demonstrated to host optically addressable single spins by means of electrostatic doping the localized excitons. Electrostatic doping is not the only route to charging localized quantum emitters and another path forward is through band structure engineering using van der Waals heterojunctions. Critical to this second approach is to interface tungsten diselenide with other van der Waals materials with relative band-alignments conducive to the phenomenon of charge transfer. In this work we show that the Type-II band-alignment between tungsten diselenide and chromium triiodide can be exploited to excite localized charged excitons in tungsten diselenide. Leveraging spin-dependent charge transfer in the device, we demonstrate spin selectivity in the preparation of the spin-valley state of localized single holes. Combined with the use of strain-inducing nanopillars to coordinate the spatial location of tungsten diselenide quantum emitters, we uncover the possibility of realizing large-scale deterministic arrays of optically addressable spin-valley holes in a solid state platform.

     
    more » « less
  4. Strain engineering is a natural route to control the electronic and optical properties of two-dimensional (2D) materials. Recently, 2D semiconductors have also been demonstrated as an intriguing host of strain-induced quantum-confined emitters with unique valley properties inherited from the host semiconductor. Here, we study the continuous and reversible tuning of the light emitted by such localized emitters in a monolayer tungsten diselenide embedded in a van der Waals heterostructure. Biaxial strain is applied on the emitters via strain transfer from a lead magnesium niobate–lead titanate (PMN-PT) piezoelectric substrate. Efficient modulation of the emission energy of several localized emitters up to 10 meV has been demonstrated on application of a voltage on the piezoelectric substrate. Further, we also find that the emission axis rotates by∼<#comment/>40∘<#comment/>as the magnitude of the biaxial strain is varied on these emitters. These results elevate the prospect of using all electrically controlled devices where the property of the localized emitters in a 2D host can be engineered with elastic fields for an integrated opto-electronics and nano-photonics platform.

     
    more » « less